Answers for Problems 3

3.1

Omitted.

3.2

(a) At $0 \le x \le L$, axial force and torsional moment are zero and bending moment is Q = F, $M_x = F(x - L)$

At $L \le x \le 2L$, axial force, shear force, bending moment and torsional moment are zero.

- (b) The bar is rotated because the moments do not equilibrate.
- (c) At $0 \le x \le L$, $T_x = -T$. The others are zero. At $L \le x \le 2L$, every force and moment are zero.
- (d) Shear force and bending moment are zero. $P_x = -P$. $T_x = -T$.

3.3

- (a) $P = F/\sqrt{2}$, $Q = -F/\sqrt{2}$, $M = F(L-x)/\sqrt{2}$, T = 0
- (b) P = 0, Q = F, M = F(L x), T = FD/2

3.4

- (1) Normal force: P = -F, shear force: Q = 0
- (2) Normal force: P = -F, shear force: Q = 0, bending moment: M = -FD/4

3.5

- (1) Normal force: $P = -\sqrt{3}F/2$, shear force: $Q_y = 0$, $Q_z = -F/2$
- (2) Bending moment: $M_y = 3FD/2$, $M_z = -\sqrt{3}FD/8$, torsional moment: T = -FD/8

3.6

- (1) Normal force: P = F, shear force: Q = 0, bending moment: M = 0, torsional moment: T = 0
- (2) Normal force: P = F/2, shear force: $Q = -\sqrt{3}F/2$, bending moment: $M = 3\sqrt{3}FL/2$, torsional moment: T = 0

3.7

- (1) Normal force: $P = -F_1$, shear force: Q = 0, bending moment: $M = 2F_1L$, torsional moment: T = 0
- (2) Normal force: P=0, shear force: $Q=-F_2$, bending moment: $M=3F_2L$, torsional moment: $T=2F_2L$

3.8

- (1) Normal force: $P = F \sin 30^{\circ} = \frac{\sqrt{3}}{2}F$, shear force: $Q = -F \sin 30^{\circ} = -\frac{1}{2}F$, bending moment: $M = -F \cos 30^{\circ} \frac{D}{2} + F \sin 30^{\circ} L = -\frac{\sqrt{3}}{2}F \frac{D}{2} + \frac{1}{2}FL = \frac{F}{4}(2L \sqrt{3}D)$
- (2) Normal force: P = 0, shear force: Q = 0, bending moment: M = 0

3.9

- (1) $P_0 = 0$, $Q_1 = F$, $Q_2 = 0$
- (2) $M_1 = -Fa$, $M_2 = 0$, $T_0 = Fc$

3.10

第3章 力・モーメント

(1)
$$P = \frac{F}{2}$$
, $Q = \frac{\sqrt{3}F}{2}$, $M = \frac{F}{4} \{ 2\sqrt{3}(b+c) - D \}$, $T = 0$

(2)
$$P = 0$$
, $Q = -\sqrt{3}F$, $M = \frac{\sqrt{3}F}{2}(2b+c)$, $T = 0$

3.11

- (1) P=0, Q=-F, M=FL
- (2) P = -F, Q = 0, M = -2FL

3.12

- (1) $P_z = 0$, $Q_x = 0$, $Q_y = -F$, $M_x = 6FR$, $M_y = 0$, $T_z = 0$
- (2) $P_z = 0$, $Q_x = 0$, $Q_y = F$, $M_x 6FR$, $T_z = -3FR$